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LEl’TER TO THE EDITOR 

The effect of dynamics on damage spreading in the 
two-dimensional classical X Y  model 

John Chiu? and S Teitel 
Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA 

Received 6 July 1990 

Abstract. We study damage spreading in the classical two-dimensional XY model, using 
a dynamics and distance measure which preserve the rotational invariance of the Hamil- 
tonian. We find only a high temperature random phase and a low temperature ordered 
phase, consistent with equilibrium results. Our results contrast to previous results of 
Golinelli and Derrida. 

The notion of ‘damage spreading’, i.e. measuring the distance between two different 
initial spin configurations as they evolve in time according to the same dynamical rule 
subject to the same stochastic noise, has been used as a means of studying phase 
transitions in statistical systems [l-91. Although it is a dynamical method, it has been 
argued that the transitions found with this approach often reflect a corresponding 
equilibrium transition [ l ,  3-51. Hence the method has been applied in cases where 
equilibrium phase transitions are hard to detect in standard Monte Carlo simulations, 
such as the spin glass problem [2,6] and commensurate-incommensurate transitions 

If the connection between damage spreading and equilibrium phase transitions is 
to be strengthened, it is important to understand the role of the particular dynamical 
rule used in the damage spreading calculation. Recently Mariz et a1 [8] have carried 
out a calculation of damage spreading in the two-dimensional ferromagnetic Ising 
model, comparing heat bath, Glauber, and various Monte Carlo dynamics. In this 
letter we consider the two-dimensional classical X Y  model, and show that the transi- 
tions in damage spreading depend crucially on the symmetry of the dynamics chosen. 

In a recent paper, Golinelli and Derrida [9] applied the idea of damage spreading 
to study behaviour in the ordinary 2~ classical X Y  model. They found surprising 
results, suggesting three separate phases. For a configuration of spins specified by their 
angles { O i } ,  the Hamiltonian is 

[71. 

,x= - c cos(ei - e,) (1) 
( i d  

where the sum is over nearest-neighbour sites of a square lattice of length L. Defining 
the distance at time t between two spin configurations { ei(  t ) }  and { gi( t ) }  as 

Golinelli and Derrida find at large t that for T >  T2-  1.8, the distance D ( t )  =0, 
independent of the initial conditions; for T2 > T > T, - 1.2, D( t )  approaches a non-zero 

t Present address: Department of Physics, California Institute of Technology, Pasadena, CA 91 125, USA. 

0305-4470/90/170891+ 04%03.50 @ 1990 IOP Publishing Ltd L89 1 



L892 Letter to the Editor 

constant, independent of the initial conditions; and for TI > T, D( t )  approaches a 
non-zero constant, which does depend on the initial conditions. Such a three-phase 
behaviour is similar to that seen in damage spreading calculations for the 3~ Ising 
spin glass [2]. In the present case, TI lies close to the equilibrium Kosterlitz-Thouless 
transition temperature [lo, 111, while Garel et a1 [12] have suggested that T2 may be 
related to a disorder point. 

We now show that this three-phase behaviour is a direct consequence of the 
particular dynamics chosen. When we modify the dynamics to preserve the rotational 
symmetry of the Hamiltonian ( l ) ,  we recover only the two phases familiar from 
equilibrium simulations. This puts in question whether the T2 found by Golinelli and 
Derrida does in fact correspond to any equilibrium phenomenon, or is rather a purely 
dynamical effect. 

The dynamics of Golinelli and Derrida is summarized as follows: to update a 
configuration % = {et},  a random site i is chosen, and a new configuration Fe’ is formed 
by replacing the spin 8, by a new one whose angle 8 :  is uniformly distributed on 
[0,27r]. This new %“ is then either accepted or rejected according to the standard 
Metropolis algorithm, i.e. accepted if z =s exp[( X( %) - X( %’))/ TI where z is a random 
number uniformly distributed on [0, 13. The configuration @ = { g)} is then updated 
using the same Metropolis rule with the same site i, the same new spin e:, and the 
same random number z. This dynamics is similar to the heat bath dynamics [8], in 
that the new spin 8:  is chosen independent of the old spin 8,. One important feature 
of this dynamics is that it breaks the rotational invariance of the Hamiltonian ( l) ,  i.e. 
if the configuration { 8, (0)) evolves into { 8, ( t ) }  then the configuration { 8, (0) + &} does 
not in general evolve into {e,( t )  + do}. This is explicitly shown in Golinelli and Derrida’s 
simulation: for T > T2 two oppositely aligned initial configurations with D(0)  = 1, 
evolve into configurations with D( t )  = 0. If rotational symmetry were preserved, the 
distance between these two configurations would be a constant of the motion. 

We consider now, instead, a dynamics for the X Y  model which does preserve 
rotational symmetry. Our updating scheme is just as described above, except now we 
choose the new spin to be 8:  = 8, + A 8  where A 8  is uniformly distributed on [-a, SI, 
with S chosen as a function of temperature to give roughly a 50% acceptance. By 
defining the new spin in terms of a rotation of the old spin, rotational invariance is 
preserved. Furthermore, since the two configurations {e,} and { O t + & }  now have 
identical equilibrium and dynamical behaviour, we redefine the distance function to 
measure zero distance between them; i.e. two configurations related by rotation of all 
spins by a constant angle, are now regarded as equivalent. We do this by first rotating 
all the spins of one configuration so that the total magnetizations of the two configur- 
ations are aligned, before applying the distance function (2). Equivalently, if 

is the angle of the total magnetization of {e i (  t ) } ,  then our new distance function is 

Using our rotationally invariant dynamics and measure, we now repeat the damage 
spreading calculation. We consider three different initial conditions for the two initial 
configurations V(0) and e(0). 
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( a )  %(O) is random. @(O)  = %(O) except for 10% of the spins which are randomly 

( b )  Same as in ( a )  except 20% of the spins are different. 
(c) %(O) and e(0) are chosen randomly and independently. 
We study square lattices of length L = 8, and 16. Our results are shown in figure 

1, for D( t )  against T, as t = 1500 time steps, after equilibrium has been achieved (each 
time step represents an update of L2 spins). We average over 100 different initial 
configurations, for each of the three conditions above. At high temperatures T, the 
distance B( t )  = i, indicating that the two configurations have become completely 
random with respect to each other. At low T, D(t)+O, indicating that the two 
configurations have become identical. The transition between these two limits occurs 
in a temperature region which gets narrower as L increases. At all temperatures, there 
is no memory of the initial condition ( a ) - ( c ) .  We have also done simulations for 
L = 32,  with condition ( a ) .  Our results, at t = 2500, averaged over 10 different initial 
configurations, are also shown in figure 1. They show the same trends as above. The 
increasing tail at very low T is due to the failure to reach equilibrium. 

chosen and given random angles. 
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Figure 1. Damage spreading distance r)( t )  against temperature T, for various lattice lengths 
L and initial conditions (see text) ( a ) ,  ( b ) ,  ( c )  as shown. For L=8,  16 r) is evaluated at 
t = 1500; for L = 32, at t = 2500. No memory of initial conditions is apparent. The Kosterlitz- 
Thouless equilibrium transition temperature, TKT= 0.89, is indicated for comparison. 
Typical error bars are shown at T = 0.2 and 1.1. 

We thus see that once rotational invariance is restored in the dynamics, we find 
only two phases characterizing different damage spreading behaviour: a high T random 
phase, and a low T ordered phase. Neither phase has any memory of initial conditions. 
The transition occurs close to the equilibrium Kosterlitz-Thouless transition TKT - 0.89, 
and we note that the quantity 1 -2B bears a striking resemblance to the finite-size 
behaviour of the equilibrium helicity modulus [I31 (although we have no theoretical 
argument connecting the two). Our calculations suggest that damage spreading transi- 
tions may be more closely related to equilibrium transitions, when the dynamics chosen 
preserves the symmetry of the Hamiltonian. 
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